
TPT libraries are divided into Editor support and Runtime support, with separate assembly
definitions.

This includes support for the custom Selection Inspector, the Tile+Brush, several custom editor
windows, diagnostic tools, and Tile+Painter. Painter is a Painting / Editing tool with separate
documentation for you to read. It’s UI-Elements based and does away with the concept of brushes
completely.

The most important part of the Runtime library is generically called TpLib and comprises several
different subsystems. Much of what you use it for can be loosely thought of as a “Tilemap
Database” or TMDB.

By using the TMDB you generally don’t have to keep track of what Tilemap a tile is placed on nor
its position. For example, you can query TpLib for all TPT tiles with a particular tag and send them
all a message to activate animation with ONE method call.

Keeping track of tiles in this fashion is much easier and becomes very important when chunks of
tiles are dynamically added and removed from Tilemaps as part of TPT’s Layout system. For more
details see the online documentation.

Example: a Waypoint. Your player reaches the waypoint. You preserve its GUID in a save
file so you can easily locate it again without knowing its position or even which Tilemap
it’s on.

TPT is divided into two types of code: Static libraries and Scriptable Runtime Services (SRS).

Basic Architecture

Libraries

The Editor Library

The Runtime library

Organization

Static Libraries



TileFabLib: This library handles loading Tilemap archives. It’s also the underlying basis of the
Layout subsystem.

TpEvents: Tiles can post events. A MonoBehaviour or other code can interpret these, or scriptable
objects called “Actions” can be used to automatically handle the events.

TpTileUtils: A library of utilities related to Tilemaps and tiles.

SRS is short for “Scriptable Runtime Service.” These are Scriptable Objects which can be
dynamically loaded at runtime (only) and have special features such as being able to receive
Update events.

TPT uses SRS instead of static classes when possible.

1. Faster Domain reloading.
2. If you don’t need certain SRS then they aren’t in memory.
3. SRS can be unloaded from memory when not needed.

These basic SRS are provided with TilePlus Toolkit:

TpMessaging
TpSpawner
TpTileTweener
TpTilePositionDb

You can easily create SRS for your own use, see the online documentation. The Layout demo uses
custom SRS for game state, file access, and the customized layout controller for the Layout system.

Using a SRS for game state is something that one shouldn’t normally do as it’s using the service
like a Singleton which is generally frowned upon. Although a SRS makes a great singleton, there’s
no ‘Instance’ property, the only access is via the service locator.

SRS

Revision #4
Created 15 July 2025 13:42:35 by Vonchor
Updated 22 July 2025 13:21:43 by Vonchor


