
ITpMessaging is used to implement targets for the Messaging Service.

It's pretty simple:

Message Packets are discussed here.

In your custom tile code you use explicit implementations for these members, for example:

ITpMessaging

/// <summary>

/// Interface for using TpLib SendMessage methods.

/// </summary>

/// <typeparam name="T">Type for sending a message</typeparam>

public interface ITpMessaging <in T> where T:MessagePacket<T>

{

 /// <summary>

 /// Send a message of type T

 /// </summary>

 /// <param name="sentPacket">The sent packet.</param>

 void MessageTarget(T sentPacket);

 /// <summary>

 /// Optional "are you ready?" method that can be used in filtering

 /// prior to sending a message. Useful in some edge cases. Override

 /// in implementation if necc. NOTE this is NOT checked internally

 /// somehow. You have to use a filter and test this.

 /// </summary>

 /// <returns>True if the tile is prepared to get the message.</returns>

 bool CanAcceptMessage() { return true; }

}

void ITpMessaging<ActionToTilePacket>.MessageTarget(ActionToTilePacket sentPacket)

{

 ActivateAnimation(!AnimationIsRunning);

}

https://true-monkey.pikapod.net/books/tileplus-toolkit/page/messages

T is ActionToTilePacket. In this example, the packet information is ignored.

Here's a more complex example where the packet contents are used to control what happens. In
this case, T is PositionPacket, which just contains a position (like the Player position). This is from
TpAnimZoneSpawner.

This tile has a 'Zone' (aka, BoundsInt) that describes an area. It doesn't even have to cover the tile
itself. But the BoundsInt position is the offset of the zone from the tile's position and not an
absolute position: think of it as relative addressing.

That's why the tile's grid position is subtracted from the position information in the packet before
seeing if the packet's position information is a point within the BoundsInt.

If the position is within the BoundsInt then we spawn something, based on how the tile is set up.

void ITpMessaging<PositionPacket>.MessageTarget(PositionPacket sentPacket)

{

 var pos = sentPacket.m_Position;

 lastContactPosition = pos;

 pos -= m_TileGridPosition; //remove offset

 if (m_ZoneBoundsInt.Contains(pos))

 SpawnTileOrPrefab();

}

Revision #3
Created 12 July 2025 12:57:08 by Vonchor
Updated 12 July 2025 13:15:59 by Vonchor

