
None of the TpLib TMDB and query functions, and none of the Event, Messaging, Persistence, and
most other TilePlus functionality would work without the special TilePlusBase class.

Throughout the documentation and codebase you'll see TilePlusBase tiles referred to as TPB. TPB
and derived tiles are generically referred to as TPT tiles.

Here's a class diagram generated in Rider which shows the basic class structure for all the TilePlus
tiles in the Runtime library:

TilePlusBase_ClassStructure.png

The lines show inheritance and the various dependencies.

TilePlusBase is divided into several partial classes just for organizational purposes:

TilePlusBase
TilePlusBaseData
TilePlusBaseEnums
TilePlusBaseStubs
TilePlusBaseZoneEditor
(Editor Folder) TilePlusBaseEditor.

Name the most powerful boss from any game you like: you would rather meet that boss in
unarmed naked combat (IRL) then mess with this code. Seriously, read-only!

But unless you're deep into coding, you can ignore it. You can create a TilePlusBase tile asset and
Paint it on a Tilemap but there's limited use for such an asset.

All the useful TPT tile types are derived from TilePlusBase, which, aside from supporting the use of
cloned tiles properly, provides many properties and methods for the derived classes to use
including basic animation support features.

Usually you'll only need to create derived classes from TpSlideShow, TpFlexAnimatedTile, or one of
the two animated spawner variations.

Two important notes:

The Big Deal

A Key Feature

https://true-monkey.pikapod.net/uploads/images/gallery/2025-06/tileplusbase-classstructure.png


Overidden methods generally should have their base classes invoked.
StartUp should call the base class before doing anything else and return false if the base
class returns false.

TPT tiles have three possible states maintained by the TilePlusBase instance.

Asset: The tile is an asset in a Project Folder. Painting it changes state to Clone.
Clone: The tile is present in a Scene. You can save it to the Project as an Asset.
Locked: The tile is part of a TpTileBundle (Bundle) asset in the Project Folder.

If you Inspect a TPT asset in the Project window and open the “TilePlus Basic Settings” foldout,
you’ll note that the State field is Asset.

When a TPT tile is added into a Palette it remains in the Asset state. You can see this by selecting it
in the Palette Window – the Brush Inspector’s Tile Info/Name field displays [Asset] .

When the tile is painted on a Tilemap, the state changes from Asset to Clone. You can see this by
picking the tile using the Palette Select tool and looking at the “TilePlus Data” section’s first line.

The only exception is when you use the Pick function of a Brush or Tile+Painter to copy and paste
tiles. In that case, the copied tile is already a clone, and the pasted tile is the same clone, which is
not what’s wanted. The system recognizes when this happens (in-editor only and Play mode if you
copy/paste programmatically), makes a new clone of the tile and paints it in the pasting location.
This is implemented by TpLib.CopyAndPasteTile.

You can use a Selection Inspector toolbar button to save a TPT tile from the Scene to the Project as
a Normal, cloneable TPT tile asset. The selected tile isn’t affected. This is handy for prototyping:
you can customize a TPT tile right in the Scene and save it either for backup or as a template for
further use. A simple versioning scheme adds version numbers to the saved assets.

Locked TPT tiles are the same as ordinary tiles in the sense that any modifications to the Locked
tile painted on the Tilemap affect the tile asset in the Project. They’re only seen as sub-assets of an
asset created when the Tilemap bundling functions are used.

If a Locked tile is present in a tilemap, it converts into a Clone tile at runtime.

One of the key features of TilePlusBase tiles (and their subclasses) is that the Tile instance always
knows what Tilemap it’s part of and always knows its position on the Tilemap. The position
information isn’t static: the position is updated if you move a tile. To be clear, this is performed
entirely within the tile and has nothing to do with how the tile was placed: Unity Tilemap Editor,
Tile+Painter, or via code.

When a tile is placed or moved, it calls a method in TpLib to register itself in the various data
structures. This also happens when you start your app or load a new scene.

Basics



Revision #9
Created 22 June 2025 19:07:40 by Vonchor
Updated 6 July 2025 14:18:59 by Vonchor


