
You use one of the SetScene overloads of ChunkedSceneManager to change TScenes.

The very last thing that TpChunkedSceneManager.SetScene does prior to invoking the
OnAfterTSceneChange callback is to evaluate all the Initializers for each TSceneSpec in the TScene
and each Initializer referenced by the TpZoneLayout that’s specified by name in the TSceneSpec.

Quite a mouthful. But what’s a TSceneInitializer, anyway?

It’s a Scriptable Object asset in your project. It must subclass TSceneInitializer. It has one method
that you need to override: Exec(), and one serialized field: AugmentDefault.

TSceneInitializers are evaluated in a simple hierarchy: the TSceneInitializer referenced by the
TpZoneLayout is the default and the TSceneInitializer referenced by the TSceneSpec (if any) is
secondary: it can be used in addition to the default (augments) or instead of. The state of
AugmentDefault is used to control what happens when there are two TSceneInitializers:

AugmentDefault on the TpZoneLayout’s TSceneInitializer is ignored.

Possible cases:

TSceneSpec has TSceneInitializer and so does TpZoneLayout
TSceneSpec TSceneInitializer has AugmentDefault = true

exec TpZoneLayout TSceneInitializer
exec TSceneSpec TSceneInitializer (augments whatever the ZoneLayout’s
TSceneInitializer does).

TSceneSpec TSceneInitializer has AugmentDefault = false
exec TSceneSpec TSceneInitializer

only TpZoneLayout has TSceneInitializer
exec TpZoneLayout TSceneInitializer

only TSceneSpec has a TSceneInitializer
exec TSceneSpec TSceneInitializer

In words, if there’s a TSceneInitializer attached to the TpZoneLayout it’s the default and
ChunkedSceneManager will always invoke its Exec method. If there’s also a TSceneInitializer in a
TSceneSpec it can be used in addition to the default (augment) or instead of the default, or, if
there’s no default at all then that one is used.

TSceneInitializer

Entirely up to you. Examine MainGridSceneInitializer in the Chunking demo for an example.

When loading a level you often need to do further configuration based on what was loaded. For
example, your level might have waypoints, and you want to have a list of where they are so that
you can position your Player character at the last waypoint. You may have some special features
that are in some levels and not others.

Often this devolves into having lots of tests specific to particular levels. Using initializers allows you
to have post-load operations that are generic to all levels in the TpZoneLayout’s referenced
TSceneInitializer; sort of like a refactoring.

Then, for levels with specific initialization requirements, use another TSceneInitializer referenced
by a particular TSceneSpec. The AugmentDefault setting on this secondary TSceneInitializer can be
used to control whether it is used in addition to the default TSceneInitializer or instead of the
default TSceneInitializer.

Let’s examine the MainGridSceneInitializer with some added comments:

What are TSceneInitializers
used for?

/// <inheritdoc

/>

/// <remarks>Here the passed-in object to the callback is the TpChunkedSceneManager

component</remarks>

public override bool Exec(TSceneList.TSceneSpec

tSceneSpec,

 TpZoneLayout

zoneLayout,

 TpChunkedSceneManager

sceneManager,

 Func<TSceneList.TSceneSpec, TpZoneLayout, object?, object>?

callback)

{

 //get all the waypoints in this

Tscene

 var selector =

tSceneSpec.m_Selector;

 if (selector ==

null)

 return false; //should not

occur

 var zm =

zoneLayout.LayoutZoneManager;

 if (zm ==

null)

 return false; //should not

occur.

ChunkingDemoGameState.m_TemplateWaypoints.Clear();

ChunkingDemoGameState.m_TemplateWaypoints

.AddRange(selector.GetTilePlusTilesOfType<CdemoWaypointTile>(zoneLayout,

 WpFilter, 32)); \\FINDING ALL THE

WAYPOINTS

 //filter does nothing, use is illustrative

only.

 //the tile is an asset from a

TileBundle.

 //the string is the tilemap name embedded in the bundle's parent

TileFab.

 bool WpFilter(CdemoWaypointTile tile, string

s)

{

 return

true;

}

ChunkingDemoGameState.m_TemplateNpcSpawners.Clear();

 //get all spawners. This is just as an example; the returned value isn't used in this

demo.

 ChunkingDemoGameState.m_TemplateNpcSpawners FINDING ALL THE SPAWNERS

.AddRange(selector.GetTilePlusTilesOfType<NpcSpawnerTile>(zoneLayout));

 //FINDING ALL THE IMMORTALIZER TILES

 //get all Immortalizer tiles. This tile is a totally passive tile that describes an

area.

 //ALL layout zones in this area will be immortal ie won't be deleted

until

 //ALL zones become deleted on a change

scene.

 var immortalizerTiles =

selector.GetTilePlusTilesOfType<TpImmortalizer>(zoneLayout);

ChunkingDemoGameState.S_TemplateImmortalZones.Clear();

ChunkingDemoGameState.S_TemplateImmortalZonesLocatorPositions.Clear();

You’ll note the repeated use of selector.GetTilePlusTilesOfType. This is a very handy method that
can be used to extract any particular Type of TilePlus tile. It’s assumed that any interactive tile will
be derived from TilePlusBase. There’s no similar facility for normal Unity tiles.

Normally there aren’t that many TilePlus tiles in a TScene. Nevertheless, it’s recommended to only
use this method during initialization as it has to scan through all of the TilePlus tiles each time that
it’s called.

 //A hashset of all the locators. Hashset ensures no

duplicates

 foreach (var qr in

immortalizerTiles)

{

 var pos =

qr.m_Position;

 var locator =

zm.GetLocatorForGridPosition(pos);

ChunkingDemoGameState.S_TemplateImmortalZones.Add(locator);

 ChunkingDemoGameState.S_TemplateImmortalZonesLocatorPositions.Add((Vector3Int)

locator.position);

}

 //now we have a hashset of the locator positions that are immortal. Faster, see loading

filter callback.

 //note that even if there are multiple immortalizer tiles in one zone the HashSet will

have only one entry.

 return

true;

}

Revision #5
Created 11 July 2025 11:49:55 by Vonchor
Updated 11 July 2025 12:10:13 by Vonchor

